The Addition of Spin 1/2 and Orbital Angular Momentum (Details)

Of great importance for future applications is the combination of a spin with an orbital angular momentum. Since \mathbf{L} depends on spatial coordinates and \mathbf{S} does not, they commute

$$[\mathbf{L}, \mathbf{S}] = 0 \quad (10A-1)$$

It is therefore evident that the components of the total angular momentum \mathbf{J}, defined by

$$\mathbf{J} = \mathbf{L} + \mathbf{S} \quad (10A-2)$$

will satisfy the angular momentum commutation relations.

In asking for linear combinations of the Y_{lm} and the χ_{\pm} that are eigenstates of

$$J_z = L_z + S_z \quad (10A-3)$$

and

$$\mathbf{J}^2 = \mathbf{L}^2 + \mathbf{S}^2 + 2\mathbf{L} \cdot \mathbf{S} \quad (10A-4)$$

we are again looking for the expansion coefficients of one complete set of eigenfunctions in terms of another set of eigenfunctions.

Let us consider the linear combination

$$\psi_{j,m+\frac{1}{2}} = \alpha Y_{lm} \chi_+ + \beta Y_{l,m+1} \chi_- \quad (10A-5)$$

It is, by construction, an eigenfunction of J_z with eigenvalue $(m + \frac{1}{2})\hbar$. We now determine α and β such that it is also an eigenfunction of \mathbf{J}^2. We shall make use of the fact that

$$L_+ Y_{lm} = [(l + 1)(l + m) - m(m + 1)]^{1/2} \hbar Y_{lm+1} \quad (10A-6)$$

$$L_- Y_{lm} = [(l + m + 1)(l + 1) - (l - m)]^{1/2} \hbar Y_{lm-1}$$

$$S_+ \chi_+ = S_- \chi_- = 0 \quad S_+ \chi_\mp = \hbar \chi_\mp$$

Then

$$\mathbf{J}^2 \psi_{j,m+\frac{1}{2}} = \hbar^2 \left\{ \frac{1}{2} (l + 1) Y_{lm} \chi_+ + \frac{3}{4} Y_{lm} \chi_+ + \frac{2m+1}{2} Y_{lm} \chi_+ + [(l-m)(l+m+1)]^{1/2} Y_{l,m+1} \chi_- \right\} + \frac{1}{2} \beta \hbar^2 \left\{ \frac{3}{2} Y_{l,m+1} \chi_- + 2(l+1)(-\frac{1}{2}) Y_{l,m+1} \chi_- + [(l-m)(l+m+1)]^{1/2} Y_{lm} \chi_+ \right\} \quad (10A-7)$$
This will be of the form
\[\hbar^2 j(j + 1) \psi_{j,m+1/2} = \hbar^2 j(j + 1)(\alpha Y_{lm}X_+ + \beta Y_{l,m+1}X_-) \]
(10A-8)
provided that
\[\alpha[(l + 1) + \frac{3}{2} + m] + \beta[(l - m)(l + m + 1)]^{1/2} = j(j + 1) \alpha \]
\[\beta[(l + 1) + \frac{3}{2} - m] + \alpha[(l - m)(l + m + 1)]^{1/2} = j(j + 1) \beta \]
(10A-9)
This requires that
\[(l - m)(l + m + 1) = [j(j + 1) - l(l + 1) - \frac{3}{2} - m] \times [j(j + 1) - l(l + 1) - \frac{3}{2} + m + 1] \]
which evidently has two solutions,
\[j(j + 1) - l(l + 1) - \frac{3}{2} = \begin{cases} -l - 1 \\ l \end{cases} \]
(10A-10)
that is,
\[j = \begin{cases} l - \frac{1}{2} \\ l + \frac{1}{2} \end{cases} \]
(10A-11)
For \(j = l + 1/2 \), we get, after a little algebra
\[\alpha = \sqrt{\frac{l + m + 1}{2l + 1}} \quad \beta = \sqrt{\frac{l - m}{2l + 1}} \]
(10A-12)
(Actually we just get the ratio; these are already normalized forms.) Thus
\[\psi_{l+1/2,m+1/2} = \sqrt{\frac{l + m + 1}{2l + 1}} Y_{lm}X_+ + \sqrt{\frac{l - m}{2l + 1}} Y_{l,m+1}X_- \]
(10A-13)
We can guess that the \(j = l - 1/2 \) solution must have the form
\[\psi_{l-1/2,m+1/2} = \sqrt{\frac{l - m}{2l + 1}} Y_{lm}X_+ - \sqrt{\frac{l + m + 1}{2l + 1}} Y_{l,m+1}X_- \]
(10A-14)
in order to be orthogonal to the \(j = l + 1/2 \) solution.

General Rules for Addition of Angular Momenta, and Implications for Identical Particles

These two examples illustrate the general features that are involved in the addition of angular momenta: If we have the eigenstates \(Y_{lm}^{(1)} \) of \(L_1^2 \) and \(L_{1z} \), and the eigenstates \(Y_{l,m}^{(2)} \) of \(L_2^2 \) and \(L_{2z} \), then we can form \((2l_1 + 1)(2l_2 + 1)\) product wave functions
\[Y_{l,m_1}^{(1)} Y_{l,m_2}^{(2)} \begin{cases} -l_1 \leq m_1 \leq l_1 \\ -l_2 \leq m_2 \leq l_2 \end{cases} \]
(10A-15)
These can be classified by the eigenvalue of
\[J_z = L_{1z} + L_{2z} \]
(10A-16)
which is \(m_1 + m_2 \), and which ranges from a maximum value of \(l_1 + l_2 \) down to \(-l_1 - l_2\). As in the simple cases discussed earlier, different linear combinations of functions with
the same \(m \) value will belong to different values of \(j \). In the following table we list the possible combinations for the special example of \(l_1 = 4, l_2 = 2 \). We shall use the simple abbreviation \((m_1, m_2)\) for \(Y_{l_1 m_1}^{(1)} Y_{l_2 m_2}^{(2)}\).

<table>
<thead>
<tr>
<th>(m)-value</th>
<th>(m_1, m_2) combinations</th>
<th>numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>(4, 2)</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>(4, 1) (3, 2)</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>(4, 0) (3, 1) (2, 2)</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>(4, –1) (3, 0) (2, 1) (1, 2)</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>(4, –2) (3, –1) (2, 0) (1, 1) (0, 2)</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>(3, –2) (2, –1) (1, 0) (0, 1) (–1, 2)</td>
<td>5</td>
</tr>
<tr>
<td>0</td>
<td>(2, –2) (1, –1) (0, 0) (–1, 1) (–2, 2)</td>
<td>5</td>
</tr>
<tr>
<td>–1</td>
<td>(1, –2) (0, –1) (–1, 0) (–2, 1) (–3, 2)</td>
<td>5</td>
</tr>
<tr>
<td>–2</td>
<td>(0, –2) (–1, –1) (–2, 0) (–3, 1) (–4, 2)</td>
<td>5</td>
</tr>
<tr>
<td>–3</td>
<td>(–1, –2) (–2, –1) (–3, 0) (–4, 1)</td>
<td>4</td>
</tr>
<tr>
<td>–4</td>
<td>(–2, –2) (–3, –1) (–4, 0)</td>
<td>3</td>
</tr>
<tr>
<td>–5</td>
<td>(–3, –2) (–4, –1)</td>
<td>2</td>
</tr>
<tr>
<td>–6</td>
<td>(–4, –2)</td>
<td>1</td>
</tr>
</tbody>
</table>

There are a total of 45 combinations, consistent with \((2l_1 + 1) (2l_2 + 1)\).

The highest state has total angular momentum \(l_1 + l_2 \) as can easily be checked by applying \(\mathbf{J}^2 \) to \(Y_{l_1 l_2}^{(1)} Y_{l_1 l_2}^{(2)}\):

\[
\mathbf{J}^2 Y_{l_1 l_2}^{(1)} Y_{l_1 l_2}^{(2)} = (\mathbf{L}_1^2 + \mathbf{L}_2^2 + 2L_1 L_2 + L_{1+} L_{2-} + L_{1-} L_{2+}) Y_{l_1 l_2}^{(1)} Y_{l_1 l_2}^{(2)}
\]

\[
= \hbar^2 (l_1 (l_1 + 1) + l_2 (l_2 + 1) + 2l_1 l_2) Y_{l_1 l_2}^{(1)} Y_{l_1 l_2}^{(2)}
\]

\[
= \hbar^2 (l_1 + l_2)(l_1 + l_2 + 1) Y_{l_1 l_2}^{(1)} Y_{l_1 l_2}^{(2)} \quad (10A-17)
\]

This is \(j = 6 \) in the example discussed in the table. Successive applications of

\[
J_+ = L_{1+} + L_{2-}
\]

will pick out one linear combination from each row in the table. These will form the 13 states that belong to \(j = 6 \). When this is done, there remains a single state with \(m = 5 \), two with \(m = 4, \ldots \), one with \(m = –5 \). It is extremely plausible, and can, in fact, be checked, that the \(m = 5 \) state belongs to \(j = 5 \). Again, successive applications of \(J_- \) pick out another linear combination from each row in the table, forming 11 states that belong to \(j = 5 \). Repetition of this procedure shows that we get, after this, sets that belong to \(j = 4, j = 3, \) and finally \(j = 2 \). The multiplicities add up to 45:

\[
13 + 11 + 9 + 7 + 5 = 45
\]

We shall not work out the details of this decomposition, as it is beyond the scope of this book. We merely state the results.

(a) The produces \(Y_{l_1 m_1}^{(1)} Y_{l_2 m_2}^{(2)} \) can be decomposed into eigenstates of \(\mathbf{J}^2 \), with eigenvalues \(j(j + 1) \hbar^2 \), where \(j \) can take on the values

\[
j = l_1 + l_2, l_1 + l_2 - 1, \ldots, |l_1 - l_2|
\]

\[
(10A-19)
\]
We can verify that the multiplicities check in (10A-19): If we sum the number of states, we get \(l_1 \geq l_2 \)

\[
(2l_1 + l_2 + 1) + 2(l_1 + l_2 - 1) + \cdots + 2(l_1 - l_2 + 1) = \sum_{n=0}^{2l_1} [2(l_1 - l_2 + n) + 1] = (2l_2 + 1)(2l_1 + 1) \tag{10A-20}
\]

(b) It is possible to generate (10A-13) and (10A-14) to give the Clebsch-Gordan

\[
\psi_{jm} = \sum_{m_1} C(jm; l_1m_1l_2m_2) Y_{l_1m_1}^{(1)} Y_{l_2m_2}^{(2)} \tag{10A-21}
\]

The coefficients \(C(jm; l_1m_1l_2m_2) \) are called Clebsch-Gordan coefficients, and they have been tabulated for many values of the arguments. We calculated the coefficients for \(l_2 = 1/2 \), and summarize (10A-12) and (10A-13) in the table that follows. Note that \(m = m_1 + m_2 \), so that the \(m \) in (10A-13) and (10A-14) is really \(m_1 \) below.

<table>
<thead>
<tr>
<th>(l_1)</th>
<th>(m_2 = 1/2)</th>
<th>(m_2 = -1/2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(j = l_1 + 1/2)</td>
<td>(\sqrt{\frac{l_1 + m + 1/2}{2l_1 + 1}})</td>
<td>(\sqrt{\frac{l_1 - m + 1/2}{2l_1 + 1}})</td>
</tr>
<tr>
<td>(j = l_1 - 1/2)</td>
<td>(-\sqrt{\frac{l_1 - m + 1/2}{2l_1 + 1}})</td>
<td>(\sqrt{\frac{l_1 + m + 1/2}{2l_1 + 1}})</td>
</tr>
</tbody>
</table>

Another useful table is

<table>
<thead>
<tr>
<th>(l_1)</th>
<th>(m_2 = 1)</th>
<th>(m_2 = 0)</th>
<th>(m_2 = -1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(j = l_1 + 1)</td>
<td>(\sqrt{\frac{(l_1 + m)(l_1 + m + 1)}{(2l_1 + 1)(2l_1 + 2)}})</td>
<td>(\sqrt{\frac{(l_1 - m + 1)(l_1 + m + 1)}{(2l_1 + 1)(2l_1 + 2)}})</td>
<td>(\sqrt{\frac{(l_1 - m)(l_1 - m + 1)}{(2l_1 + 1)(2l_1 + 2)}})</td>
</tr>
<tr>
<td>(j = l_1)</td>
<td>(-\sqrt{\frac{(l_1 + m)(l_1 - m + 1)}{2l_1(l_1 + 1)}})</td>
<td>(\frac{m}{\sqrt{l_1(l_1 + 1)}})</td>
<td>(\sqrt{\frac{(l_1 - m)(l_1 + m)}{2l_1(l_1 + 1)}})</td>
</tr>
<tr>
<td>(j = l_1 - 1)</td>
<td>(\sqrt{\frac{(l_1 - m)(l_1 - m + 1)}{2l_1(2l_1 + 1)}})</td>
<td>(-\sqrt{\frac{(l_1 - m)(l_1 + m)}{l_1(2l_1 + 1)}})</td>
<td>(\sqrt{\frac{(l_1 + m)(l_1 + m + 1)}{2l_1(2l_1 + 1)}})</td>
</tr>
</tbody>
</table>
The Levi-Civita Symbol and Maxwell’s Equations

A very useful mathematical device is the use of the Levi-Civita symbol. The symbol e_{ijk} is defined by the following properties:

(a) It is antisymmetric under the interchange of any two of its indices. For example,

$$e_{123} = -e_{213} = -(e_{321})$$ \hspace{2cm} (10B-1)

and so on. Two consequences of this rule are

(i) When any two indices are equal, the value of e_{ijk} is zero.

(ii) $e_{123} = e_{231} = e_{312}$

(b) $e_{123} = 1$ \hspace{2cm} (10B-2)

Some consequences of this definition are

$$e_{ijk}e_{ilm} = 2\delta_{km}$$

$$e_{ijk}e_{imn} = \delta_{jm}\delta_{kn} - \delta_{jn}\delta_{km}$$

$$e_{ijk}A_{l}B_{k} = (A \times B)_{i}$$

$$[L_{i}, L_{j}] = ie_{ijk}L_{k}$$ \hspace{2cm} (10B-3)

We may use this to write out Maxwell’s equations in a particularly interesting way.

Maxwell’s equations in empty space have the form

$$\nabla \cdot B = 0$$

$$\nabla \cdot E = 0$$

$$\nabla \times B = \frac{1}{c^{2}} \frac{\partial E}{\partial t}$$ \hspace{2cm} (10B-4)

$$\nabla \times E = -\frac{\partial B}{\partial t}$$

They may be rewritten in the form

$$\frac{\partial}{\partial t} (E + icB) = -ic \nabla \times (E + icB)$$ \hspace{2cm} (10B-5)

Which bears some resemblance to the Schrödinger equation in that the “wave function” is complex, and that the first-order time derivative enters into the equation.

We may write the equation in a very suggestive way by using the Levi-Civita symbol in two contexts. First, the symbol may be used to give a matrix representation of the spin 1 angular momentum S. (We are actually working with the angular momentum matrix divided by \hbar—that is, with the analog of $\sigma/2$.)
To see this, we postulate

$$(S)_{jk} = -ie_{ijk}$$ \hspace{1cm} (10B-6)$$

The square of the matrix is easily calculated. We have

$$(S^2)_{jl} = (S)_{jk}(S)_{kl} = -e_{ijk} e_{ikl} = e_{ijk} e_{ikl} = 2\delta_{jl}$$ \hspace{1cm} (10B-7)$$

We next need to check the commutation relations

$$((S_a)_{jk}(S_b)_{kl} - (S_b)_{jk}(S_a)_{kl}) = -e_{ajk} e_{bkl} + e_{bjk} e_{akl}$$

$$= e_{ajk} e_{bkl} - e_{bjk} e_{akl} = \delta_{al}\delta_{jl} - \delta_{aj}\delta_{jl} + \delta_{bj}\delta_{al}$$

that is,

$$[S_a, S_b] = ie_{a0m} S_m$$ \hspace{1cm} (10B-8)$$

Let us now rewrite our version of Maxwell’s equations. It reads

$$\frac{\partial}{\partial t} (E_i + icB_i) = -iec_{inn} \frac{\partial}{\partial x_m} (E_n + iB_n)$$

$$= -c(S_m)_{in} \frac{\partial}{\partial x_m} (E_n + iB_n)$$

or equivalently,

$$i\hbar \frac{\partial}{\partial t} (E_i + icB_i) = c(S_m)_{in} \frac{\hbar}{i} \frac{\partial}{\partial x_m} (E_n + iB_n)$$ \hspace{1cm} (10B-9)$$

With the notation $\psi_i = (E_i + icB_i)$, we get

$$i\hbar \frac{\partial \psi_i}{\partial t} = c(S \cdot p_{\psi_i})_{im} \psi_m$$ \hspace{1cm} (10B-10)$$

The operator on the right side is the projection of the photon spin along the direction of motion. The complex conjugate wave function is easily seen to satisfy

$$i\hbar \frac{\partial \psi_i^*}{\partial t} = -c(S \cdot p_{\psi_i})_{im} \psi_m^*$$ \hspace{1cm} (10B-11)$$

where the right side represents the opposite projection (helicity). We need both equations to obtain separate equations for E and B.